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Abstract

In this paper, anewasymmetry-similarity-measure-basedneural fuzzy inferencesystem (ASM-NFIS) is proposed.
A pseudo-Gaussian membership function can provide a neural fuzzy inference system which has a higher flexibility
and can approach the optimized result more accurately. An on-line self-constructing learning algorithm is proposed
to automatically construct the ASM-NFIS. It consists of structure learning and parameter learning that would
create adaptive fuzzy logic rules. The structure learning is based on the similarity measure of asymmetric Gaussian
membership functions, and the parameter learning is based on a supervised gradient descent method. Computer
simulations were conducted to illustrate the performance and applicability of the proposed model.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The main purpose of a fuzzy system is to achieve a set of local input–output relationships that describe
a process. As is well known, the problem of system modeling requires two main stages: structure iden-
tification and parameter optimization. Structure identification deals with the problem of determining the
input–output space partition and how many rules must be used by the fuzzy system. Parameter optimiza-
tion finds the optimum value of all the parameters involved in the fuzzy system; that is, it locates the
membership functions in the premise and consequent of each rule[1–4,6–8,10].
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To prevent a newly generated membership function from being too similar to an existing membership
function, the similarity measure has been widely researched and broadly applied[2,7,8,10]. They adopt
the traditional symmetric Gaussian membership functions. Recently, many researchers [11,12] use the
asymmetricGaussianmembership function,which is calledPseudo-Gaussian (PG), to act as the input term
node. Because the asymmetric Gaussian membership function’s variability and malleability are higher
than those of the traditional membership function, the PG membership function can provide a neural fuzzy
inference system which has a higher flexibility and can approach the true result more easily. In [11], the
partitioning of input space is performed in advance; namely the number of fuzzy rules will be pre-set by
the users. Then, an online learning algorithm is proposed to construct the fuzzy systems dynamically in
order to overcome the aforementioned drawback. We also develop a new asymmetric similarity measure
to check the similarities between a new membership function and existing ones. Therefore, in this paper
the proposed asymmetric similarity measure method is different from the traditional symmetric similarity
measure method [2,7,8,10].

In this paper, wepresent an asymmetry-similarity-measure-basedneural fuzzy inference system (ASM-
NFIS). It is a standard four-layer feedforward neural network. An on-line learning algorithm is proposed
to automatically construct theASM-NFIS. It consists of structure learning andparameter learning.Wewill
add a new node to satisfy the fuzzy partitioning of the training data in structure learning. The similarity
measure of asymmetric Gaussian membership functions is proposed to estimate the rule’s similarity
degree. The back-propagation learning is then used for tuning input/output membership functions. This
method has the advantage of not requiring an expert’s assistance since the input–output characteristics of
the ASM-NFIS and its structure are obtained from the training examples. This is in contrast to [11] and
[12], which the input space needs to be divided properly in advance. The proposed model has been used
to identify the dynamic system and predict the chaotic time-series. The simulation results show that the
proposed ASM-NFIS model has a better learning performance than other learning systems.

2. The structure of ASM-NFIS

Thej th fuzzy if-then rule shown below is used by the ASM-NFIS:

Rj : IF x1 isA
j
1 and. . . . . . andxn isA

j
n,

THENy = bj ,
(1)

wherexi andy are the input and output variables, respectively;A
j
i is the linguistic term of the precon-

dition part with membership function�
A

j
i

; bj is the constant consequent; andn is the number of input
dimensions.

The membership function of the precondition part discussed in this paper is different from the typ-
ical Gaussian membership function. We adopt the Pseudo-Gaussian (PG) membership function[11] to
approximate desired results. The definition of PG membership function is as follows:

�
A

j
i

(xi) = exp

(
−(xi − mji)

2

�2
ji,−

)
U(xi; −∞, mji) + exp

(
−(xi − mji)

2

�2
ji,+

)
U(xi; mji, ∞), (2)

whereU(xi; a, b) =
{

1 if a�xi < b

0 otherwise,
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Fig. 1. (a) One-dimensional PG, (b) two-dimensional PG.

wheremji is the mean of the PG membership function;�ji,− is the negative deviation of the PG mem-
bership function; and�ji,+ is the positive deviation of the PG membership function. The PG membership
function is asymmetric and has great flexibility. Fig.1 shows the one- and two-dimensional PG member-
ship functions.

A typical network consists of nodes with a finite number of fan-in connections from other nodes
represented by weight values and a finite number of fan-out connections to other nodes. Associated with
the fan-in of a node is an integration function which combines information, activation, or evidence from
other nodes and provides the net input, i.e.,

net input= f (z
(k)
1 , z

(k)
2 , . . . , z(k)

p ; w
(k)
1 , w

(k)
2 , . . . , w(k)

p ), (3)

wherez
(k)
i is the ith input variable to a node in layerk andw

(k)
i is the weight of the associated link.

The superscript in the above equation indicates the layer number. This notation will be also used in the
following equations. Each node also outputs an activation value as a function of its net input

output= a[f (·)], (4)

wherea(·) denotes the activation function.
The ASM-NFIS is a standard four-layer network[8], as shown in Fig. 2, where the functions of the

nodes in each layer are described as follows:
Layer 1: The nodes in this layer are input nodes (i.e., input-linguistic nodes) which represent input-

linguistic variables and which pass input signals to the next layer directly:

f (x
(1)
i ) = x

(1)
i (5)

and

a[f (·)] = f (·), (6)

wherex
(1)
i is theith input variable to a node in layer 1.
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Fig. 2. The structure of ASM-NFIS.

Layer2: The nodes in this layer are term nodes that act as the PG membership function. They can react
to the terms of the respective input-linguistic variables. For thej th rule node,

f (z
(2)
i ) = exp

(
−(z

(2)
i − mji)

2

�2
ji,−

)
U(z

(2)
i ; −∞, mji)

+ exp

(
−(z

(2)
i − mji)

2

�2
ji,+

)
U(z

(2)
i ; mji, ∞), (7)

whereU(z
(2)
i ; a, b) =

{
1 if a�z

(2)
i < b

0 otherwise

and

a[f (·)] = f (·). (8)

Themji, �ji,−, and�ji,+ are the mean, negative deviation, and positive deviation, respectively of the PG
membership functions ofj th term associated withith input variablexi .
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Layer3: The nodes in this layer are compensatory fuzzy nodes. They represent the precondition part
of the fuzzy logic rules which can input the multiple incoming signals and output the product result.
For thej th rule node,

f (z
(3)
i ) =

n∏
i

z
(3)
i (9)

and

a[f (·)] = f (·) (10)

wheren is dimension number.
Layer 4: The nodes in this layer are denoted by�. That is, it receives the multiple incoming signals

and outputs the result of summation. For the outputy,

f (z
(4)
i ) =

M∑
j

w
(3)
j z

(4)
i (11)

and

a[f (·)] = f (·) (12)

whereM is the rule number andw(3)
j is the link weight.

3. The on-line learning algorithm

In this section, we propose an online learning algorithm which consists of the structure learning
algorithm and the parameter learning algorithm. The structure learning algorithm is used to find proper
fuzzy partitions in the input space and create fuzzy logic rules. The asymmetric similarity measure
method is used to prevent the newly generated membership function from being too similar to the existing
membership function. The parameter learning algorithm is the most general supervised learning scheme
and is used to adjust the PG membership functions in the precondition part and to modify the link weight
in the consequent part. As a result, the parameter learning algorithm is based on the back-propagation
algorithm, which minimizes the cost function to approximate the desired results. The procedure of the
structure and parameter learning algorithms is through inputting the training pattern to learn successively.

3.1. The structure learning algorithm

The proposed structure learning algorithm decides the proper fuzzy partitions by using the input
patterns. The procedure of the structure learning algorithm uses the PG membership functions to find the
fuzzy logic rules. However, the structure learning algorithm determines whether to add a new node in
layer 2 via the input pattern data and whether to add the associated fuzzy logic rule in layer 3.

After the input pattern is entered in layer 2, the firing strength of the PG membership function will
be obtained from Eq. (2), which is used to calculate the degree measure�

A
j
i

. In layer 3, the firing
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Fig. 3. An asymmetric triangle with the unity height and the length of bottom edge.

strength of the fuzzy logic rule is obtained from Eq. (4), used to obtain the degree measure of the
precondition part

Pj =
n∏

i=1

�
A

j
i

(xi), j = 1, 2, . . . , M(t), (13)

whereM(t) is the number of existing rules at timet . According to the degree measure, we can obtain the
existing maximumPj of the firing strength of the fuzzy logic rule

Pmax = max
1�j �M(t)

Pj . (14)

IF Pth > Pmax, the structure learning needs to add a new node in the ASM-NFIS. ThePth is the preset
threshold, which should be decreased when the structure learning algorithm limits the rule ofASM-NFIS.
ThePth is an important parameter and its value is set between zero and one. A lowPth value leads to the
learning of coarse clusters, whereas a highPth value leads to the learning of fine clusters. The new mean,
positive deviation, and negative deviation of the PG membership function are preset values according to
the input pattern or heuristic. The process of how the node increases is shown as follows:

m
(new)
j i = xi, (15)

�(new)
j i,− = �(new)

j i,+ = �i , (16)

wherexi is the new input pattern;�i is the preset constant.
To prevent the newly generated membership function from being too similar to the existing membership

function, the similarities between the new membership function and the existing functions must be
checked. If the new fuzzy rule is different from the existing fuzzy rule, we confirm that the new fuzzy
rule will be added in the ASM-NFIS. It can cause the neural fuzzy inference system to perform better.
Therefore, we use the similarity measure of asymmetric Gaussian membership functions to estimate the
rule’s similarity degree.

Since the area of the asymmetric Gaussian membership function, calculated from Eq. (2), is between
�+

√
� and�−

√
�, the height is always 1, and the center of the bottom-line atmi is on thex-axis. We

can approximate it by an asymmetric triangle�(mi, �i,−, �i,+) with a unity height and with the length
of bottom edge�+

√
� + �−

√
� (see Fig. 3). Assume that the two end-points of the bottom line of

�(m1, �1,−, �1,+) area andb on thex-axis, and another end-points of�(m2, �2,−, �2,+) arec andd on
thex-axis. That is,a = m1 − �1,−

√
�, b = m1 + �1,+

√
�, c = m2 − �2,−

√
�, andd = m2 + �2,+

√
�.



C.-J. Lin, W.-H. Ho / Fuzzy Sets and Systems 152 (2005) 535–551 541

Fig. 4. The five possible situations between two asymmetric triangles: (a)Case1: a �d, (b)Case2: b�d > a�c (c)Case3:
b > d and c> a (d)Case4: d > b and a> c (e)Case5: d > b and c> a.

First, if m1 = m2, whena�c andb�d, |A ∩ B| = 1
2(�2,+ + �2,−)

√
�, c�a andd �b, |A ∩ B| =

1
2(�1,+ + �1,−)

√
�, a�c andb�d, |A ∩ B| = 1

2(�2,+ + �1,−)
√

�, a�c andb�d, |A ∩ B| = 1
2(�1,+ +

�2,−)
√

�.
In the following discussion, we assume thatm1 > m2. Let us consider the following five possible

situations (see Fig.4):
Case1: If a�d, then|A ∩ B| = 0, since the two membership functions do not overlap.
Case2: If b�d > a�c, then

|A ∩ B| = 1

2
(d − a)y

= 1

2

(m2 + �2,+
√

� − m1 + �1,−
√

�)2

�1,−
√

� + �2,+
√

�
. (17)

Case3: If b > d andc > a, then

|A ∩ B| = 1

2
(x2 − c)y2 + 1

2
(y1 + y2) · (x1 − x2) + 1

2
(d − x1)y1

= 1

2

(m2 − �2,−
√

� − m1 + �1,−
√

�)2

−�1,−
√

� + �2,−
√

�
+ 1

2

(m2 + �2,+
√

� − m1 + �1,−
√

�)2

�1,−
√

� + �2,+
√

�
. (18)
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Case4: If d > b anda > c, then

|A ∩ B| = 1

2
(x2 − a)y2 + 1

2
(y1 + y2) · (x1 − x2) + 1

2
(b − x1)y1

= 1

2

(m2 + �2,+
√

� − m1 + �1,−
√

�)2

�1,−
√

� + �2,+
√

�
+ 1

2

(−m2 − �2,+
√

� + m1 + �1,+
√

�)2

�1,+
√

� − �2,+
√

�
. (19)

Case5: If d > b andc > a, then

|A ∩ B| = 1

2
(x3 − c)y3 + 1

2
(y2 + y3) · (x2 − x3) + 1

2
(y1 + y2)(x1 − x2) + 1

2
(b − x1)y1

= 1

2

(m2 − �2,−
√

� − m1 + �1,−
√

�)2

−�1,−
√

� + �2,−
√

�
+ 1

2
· (m2 + �2,+

√
� − m1 + �1,−

√
�)2

�1,−
√

� + �2,+
√

�

+1

2

(−m2 − �2,+
√

� + m1 + �1,+
√

�)2

�1,+
√

� − �2,+
√

�
. (20)

We can conclude a general formula for|A ∩ B|:

|A ∩ B| = 1

2

h2(m2 + �2,+
√

� − m1 + �1,−
√

�)

�1,−
√

� + �2,+
√

�
+ 1

2

h2(m2 − �2,−
√

� − m1 + �1,−
√

�)

−�1,−
√

� + �2,−
√

�

+1

2

h2(m2 + �2,+
√

� − m1 − �1,+
√

�)

�1,+
√

� − �2,+
√

�
, (21)

whereh(x) = max{0, x}. Thus, the approximate similarity measure of fuzzy sets is

E(A, B) = |A ∩ B|
|A ∪ B|

= |A ∩ B|
1
2 �1,+

√
� + 1

2 �1,−
√

� + 1
2 �2,+

√
� + 1

2 �2,−
√

� − |A ∩ B| . (22)

The similarity measureE between the new membership function and all existing membership functions
are calculated, and the maximumE, Emax, is calculated as follows:

Emax = max
1�j �M(t)

E(�(m
(new)
1 , �(new)

1,+ , �(new)
1,− ), �(m

j
1, �j

1,+, �j
i,−)). (23)

If Emax�Eth, whereEth ∈ (0, 1) is a prespecified threshold, then the new fuzzy logic rule is adopted and
the rule number is incremented.

M = M + 1. (24)

Therefore, the new mean, deviation, and link weight are generated randomly.

3.2. The parameter learning algorithm

After the structure network has been accordingly adjusted to the current training pattern, the network
enters the parameter learning stage. The parameter learning algorithm adjusts the parameter of ASM-
NFIS optimally with the same training pattern. The back-propagation phase is used for this supervised
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learning to find the output errors of the node in each layer and to analyze the error in order to adjust the
parameter. The goal is to minimize the error function

E = 1

2
(yd(t) − y(t))2, (25)

whereyd(t) is the desired output andy(t) is the ASM-NFIS output (Fig.5).
The parameter learning algorithm based on back-propagation is then as follows:
Assuming thatw is the adjustable parameter in a node, the generally-used learning rule is

w(t + 1) = w(t) − �

(
�E

�w

)
, (26)

�E

�w
= �E

�f

�f

�w
,

= �E

�a

�a

�f

�f

�w
, (27)

where� is the learning rate.
To show the learning rules, we derive the parameter learning layer by layer.
Layer 4: There is no parameter to be adjusted in this layer.
Layer 3: Using (13) and (14), the link weight is adjusted by the amount

w
(3)
j (t + 1) = w

(3)
j (t) − �w(3)

(
�E

�w
(3)
j

)
, (28)

�E

�w
(3)
j

= − �E

�y(4)

�y(4)

�w
(3)
j

= (y(4) − yd)p
(3)
j . (29)

Layer 2: Themji of the PG membership function is adjusted by the amount

mji(t + 1) = mji(t) − �m

(
�E

�mji

)
(30)

�E

�mji

=
[

�E

�y(4)

][
�y(4)

�P
(3)
j

]�P
(3)
j

��(2)

A
j
i




��(2)

A
j
i

�mji




= (y(4) − yd)w
(3)
j

n∏
l=1
l �=i

�(2)

A
j
l

·
[

2(x
(1)
i − mji)

�2
ji,−

exp

(
−(x

(1)
i − mji)

2

�2
ji,−

)
U(x

(1)
i ; −∞, mji)

+2(x
(1)
i − mji)

�2
ji,+

exp

(
−(x

(1)
i − mji)

2

�2
ji,+

)
U(x

(1)
i ; mji, ∞)

]
(31)
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Fig. 5. The flow diagram of the structure/parameter learning for the ASM-NFIS.

The�ji,− of the PG membership function is adjusted by the amount

�ji,−(t + 1) = �ji,−(t) − ��−

(
�E

��ji,−

)
(32)
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�E

��ji,−
=
[

�E

�y(4)

][
�y(4)

�P
(3)
j

]�P
(3)
j

��(2)

A
j
i




 ��(2)

A
j
i

��ji,−




= (y(4) − yd)w
(3)
j

n∏
l=1
l �=i

�(2)

A
j
l

×
[

2(x
(1)
i − mji)

2

�3
ji,−

exp

(
−(x

(1)
i − mji)

2

�2
ji,−

)
U(x

(1)
i ; −∞, mji)

]
. (33)

The�ji,+ of the PG membership function is adjusted by the amount

�ji,+(t + 1) = �ji,+(t) − ��+
(

�E

��ji,+

)
(34)

�E

��ji,+
=
[

�E

�y(4)

][
�y(4)

�P
(3)
j

]�P
(3)
j

��(2)

A
j
i




 ��(2)

A
j
i

��ji,+




= (y(4) − yd)w
(3)
j

n∏
l=1
l �=i

�(2)

A
j
l

×
[

2(x
(1)
i − mji)

2

�3
ji,+

exp

(
−(x

(1)
i − mji)

2

�2
ji,+

)
U(x

(1)
i ; mji, ∞)

]
, (35)

where�m, ��+ and��− represent the learning rate parameters of the PG membership function respectively.

4. Illustrative examples

In this section, we simulate some popular problems. The first example is to identify a dynamic system
[6,7,9]. The second example is to predict time-series [1,3,4,6].

Example 1. Identification of the dynamic system

The plant to be identified is guided by the difference equation

y(k + 1) = y(k)

1+ y2(k)
+ u3(k), (36)

u(k) = sin(2�k/100). (37)

The output of the plant depends nonlinearly on both its pass output values and input values, but the effects
of the input and output values are additive. Two hundred training patterns are generated by the plant Eqs.
(36) and (37). The initial parameters are� = 0.01, �i = 0.2, Pth = 0.15, andEth = 0.6. Starting at zero,
the numbers of clusters growdynamically for the incoming training data.The training process is continued
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Fig. 6. Simulation results of the ASM-NFIS on the PG membership functions of each input variable in Example1. (a) The
input training patterns and the final assignment of rules. (b) The distribution of the membership functions on theu(k) andy(k)

dimensions.

500 times. After training, the final root mean square (rms) error of the identification output approximates
0.001652. There are five fuzzy logic rules generated inASM-NFIS. Fig.6 illustrates the distribution of the
training patterns and the final assignment of the rules (i.e., distribution of the membership functions) in
[u(k), y(k)] plain (input space). Fig. 7 shows the output of the plant and the identification model after the
500 training steps are finished. In this figure, the output of the ASM-NFIS model are represented by “∗”
while the plant output values are represented as “o”. The results show the good identification capability
of the trained ASM-NFIS model.

The selection ofPth will crucially affect the simulation results. A lowPth value leads to the learning
of coarse clusters, whereas a highPth value leads to the learning of fine clusters. In this simulation, we
adopt the differentPth values to perform the identification problem. The simulation results are tabulated
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Fig. 7. Simulation results of the ASM-NFIS model in Example1.

Table 1
Performance comparison of variousPth values on the identification problem

Pth values 0.05 0.15 0.2
Rule numbers 3 5 8
RMS error 0.0027 0.0016 0.00072

in Table1. Table 1 shows if we choose a highPth value, the numbers of fuzzy rules will be increased but
the rms errors will be decreased.

Example 2. Prediction of the chaotic time-series

LetP (k), k = 1, 2, . . ., be a time series. The problem of the time-series prediction can be formulated in
the following way: givenP (k −m+1), P (k −m+2), . . . , P (k), determineP (k + l), wherem andl are
fixed positive integers. (i.e., determine a mapping from[P (k − m + 1), P (k − m + 2), . . . , P (k)] ∈ �m

to [P (k + l)] ∈ �). To illustrate the online learning ability, the ASM-NFIS model is used to predict the
Mackey–Glass chaotic time-series.TheMackey–Glass chaotic time-series is generated from the following
delay differential equation:

dx(t)

dt
= 0.2x(t − �)

1+ x10(t − �)
− 0.1x(t), (38)

where� > 17.
In our simulation, we chose the series with� = 30. Fig.8 shows 1000 points of this chaotic series used

to test the ASM-NFIS model. We chosem = 9 andl = 1 (i.e., nine point values in the series are used to
predict the value of the next time point). The 200 points of the series fromx(501) − x(700) are used as
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Fig. 8. The Mackey–Glass chaotic time series.

Fig. 9. Learning curve of the proposed ASM-NFIS model.

training data, and the final 300 points fromx(701)− x(1000) are used as test data. The initial parameters
are� = 0.01, �i = 0.2, Pth = 0.15, andEth = 0.6. After the structure and parameter learning, three
fuzzy logic rules were generated in our model. The learning curve is shown in Fig.9. The rms error of the
prediction output approximates 0.0016083. Fig. 10 shows the prediction results of the trainedASM-NFIS.
We compared the performance of our system with that of other existing methods that can generate fuzzy
rules from numerical data automatically. The comparison results are tabulated in Table 2. The simulation
results show that our system has better learning performance than other learning systems.

In [13], Wang and Mendel tried to improve the prediction accuracy by using an updating fuzzy rule
base procedure and dividing the domain interval into finer regions in their system. In the end, their system
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Fig. 10. The solid line denotes the output of ASM-NFIS and the dotted line denotes the true output.

Table 2
Performance comparison of various rule generation methods on the time-series prediction problem

ASM-NFIS FNN SONFIN FALCON-ART Wang and Mendel Kosko (AVQ)[5]
[8] [2] [6] [13]

UCL DCL

Rule numbers 3 4 4 22 121 100 100
RMS error 0.0016 0.0023 0.018 0.08 0.08 0.09 0.09

achieved perfect prediction capability when the domain interval was divided into 29 regions. Kim and
Kasabov[4] proposed a hybrid neural fuzzy inference system (HyFIS) for building fuzzy models. In the
HyFIS model, fuzzy rules were extracted by using fuzzy techniques proposed by [13] and parameters
were adjusted by using a gradient descent learning algorithm. In [4] and [13], the input space needs to
be divided properly in advance. Jang [1] proposed an adaptive-network-based fuzzy inference system
(ANFIS) model for learning and tuning a fuzzy predictor. By using a hybrid learning procedure, the
proposed ANFIS can construct an input/output mapping based on both human knowledge and stipulated
input/output pairs. TheANFIS also has perfect prediction capability of the chaotic time series prediction
problem. However, the proper fuzzy rules and space partition must be given in advance by experts.

5. Discussion

In this section, we summarize the features of the proposed ASM-NFIS model. First, distributed rep-
resentation is used to represent the input patterns in the ASM-NFIS model. The input space is divided
into overlapping smaller regions and the partitioning is not performed in advance, but is dynamically and
appropriately adjusted during the learning process.As a result, each region varies in size, and the degree of
overlap between regions is also adjustable. This is in contrast to [1,4,5,13] in which the input space needs
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to be divided properly in advance. The second feature of the proposed ASM-NFIS model prevents the
newly generated membership function from being too similar to the existing membership function. The
asymmetric similarity measure between the new membership function and the existing functions must
be checked. This is in contrast to the symmetric similarity measure[2,4,8,10]. The third feature of the
proposedASM-NFIS model is that it flexibly partitions the input space. This is in contrast to the grid-type
space partition [1]. In [1], as the number of input variables increases, the number of the partitioned grids
will grow exponentially. As a result, the required size of memory or hardware may become impractically
huge.

6. Conclusions

In this paper, we introduced a neural fuzzy system called ASM-NFIS. An on-line learning algorithm
was proposed to automatically construct the ASM-NFIS. We addressed the automatic determination of
the structure of the ASM-NFIS and the simultaneous optimization of both membership functions and
fuzzy rule conclusions. The PG membership function was used to construct the general neural fuzzy
system and to make the variability and the flexibility of theASM-NFIS higher. The similarity measure of
asymmetric Gaussian membership functions was proposed to estimate the rule’s similarity degree. The
proposed ASM-NFIS can obtain a smaller RMS error and generate less fuzzy logic rules.
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